SVM-Kmeans: Support Vector Machine based on Kmeans Clustering for Breast Cancer Diagnosis
نویسنده
چکیده
Breast cancer is the most common cancer in women, and is considered one of the most common causes of death. It increases by an alarming rate globally. Earlier detection and diagnosis could save lives and improve quality of life. In this paper, a new method for breast cancer diagnosis is presented. The proposed method, SVM-Kmeans, combines Kmeans, an unsupervised learning clustering technique, with Support Vector Machine (SVM), a supervised learning classifier. SVM-Kmeans determines number of clusters which achieves the best performance. Moreover, SVM-Kmeans removes irrelevant features using Chi-square feature selection method. This step speeds up SVM-Kmeans and solves curse dimensionality problem. We use Precision, Recall, and Accuracy performance measures to evaluate SVM-Kmeans using two breast cancer datasets. Experimental results show that SVM-Kmeans has a competitive performance compared to other methods in literature. Results show an accuracy rate achievement of 99.8%. Keywords-component; Support Vector Machine; Kmeans; Breast cancer diagnosis; Classification
منابع مشابه
KBSVM: KMeans-based SVM for Business Intelligence
The goal of business intelligence (BI) is to make decisions based on accurate and succinct information from massive amounts of data. Support vector machine (SVM) has been applied to build the classification model in the field of BI and data mining. To achieve the original goal of BI and speed up the response of real-time systems, the complexity of SVM models should be reduced when it is applied...
متن کاملDiagnosis of diabetes by using a data mining method based on native data
Background & Aim: Detecting the abnormal performance of diabetes and subsequently getting proper treatment can reduce the mortality associated with the disease. Also, timely diagnosis will result in irreversible complications for the patient. The aim of this study was to determine the status of diabetes mellitus using data mining techniques. Methods: This is an analytical study and its databas...
متن کاملA Tutorial on Classification of Remote Sensing Data
Image classification is a well known of the significant tools used to recognize and examine most sharp information in satellite images. In any remote sensing research, the decision-making way mainly rely on the efficiency of the classification process. There are disparate classification algorithms on the large satellite imagery: Multilayer perceptron back propagation neural network (MLP BPNN), ...
متن کاملRankingFor Web Databases Using SVM and K-Means algorithm
The Usage of internet in now a day is more and it became necessity for the people to do some applications such as searching web data bases in domains like Animation, vehicles, Movie, Real estates, etc. One of the problems in this context is ranking the results of a user query information. Earlier approaches problem have toused frequencies of database value regions, handling query logs, and user...
متن کاملA New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016